If it's not what You are looking for type in the equation solver your own equation and let us solve it.
w^2+5w-149=0
a = 1; b = 5; c = -149;
Δ = b2-4ac
Δ = 52-4·1·(-149)
Δ = 621
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{621}=\sqrt{9*69}=\sqrt{9}*\sqrt{69}=3\sqrt{69}$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-3\sqrt{69}}{2*1}=\frac{-5-3\sqrt{69}}{2} $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+3\sqrt{69}}{2*1}=\frac{-5+3\sqrt{69}}{2} $
| 2-3π4z=1π8z=9 | | 7m^2+140=0 | | -232+10x=-4+62 | | 7/8u=42 | | 6x-1/6=17x | | -8(-2+5p)=-18-6p | | -20-14x=13-15x | | -19-9y-y+6=0 | | -29=9-6k-14 | | -2x+6=96+7x | | 5+.5(n+14)=3 | | -81+9x=33+15x | | -12d+20=-7d | | 5x+30=2x+210 | | 3a-3=1/2a-23 | | -143-14x=163-5x | | 193-u=281 | | 17f+20-4=20f-20 | | 32+8m=2(m+7) | | -7x-12=-6+22 | | -19-3x=-4x+8 | | K+5k+8=(1+5)k+5 | | x+2(x+4)=56 | | 5x-58=98-x | | 0.92x=621 | | 6x-4(-7x-13)=58 | | -4y-15-2y+2=0 | | 2(5-8k)-13=9(1-k | | -5x-219=61+9x | | 7.5-1=4m+5 | | -15x-163=-3+149 | | 6t=7t+8 |